Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(=(x, y), remove(x, z), .(y, remove(x, z)))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(=(x, y), remove(x, z), .(y, remove(x, z)))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(=(x, y), remove(x, z), .(y, remove(x, z)))

The set Q consists of the following terms:

purge(nil)
purge(.(x0, x1))
remove(x0, nil)
remove(x0, .(x1, x2))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

PURGE(.(x, y)) → REMOVE(x, y)
REMOVE(x, .(y, z)) → REMOVE(x, z)
PURGE(.(x, y)) → PURGE(remove(x, y))

The TRS R consists of the following rules:

purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(=(x, y), remove(x, z), .(y, remove(x, z)))

The set Q consists of the following terms:

purge(nil)
purge(.(x0, x1))
remove(x0, nil)
remove(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

PURGE(.(x, y)) → REMOVE(x, y)
REMOVE(x, .(y, z)) → REMOVE(x, z)
PURGE(.(x, y)) → PURGE(remove(x, y))

The TRS R consists of the following rules:

purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(=(x, y), remove(x, z), .(y, remove(x, z)))

The set Q consists of the following terms:

purge(nil)
purge(.(x0, x1))
remove(x0, nil)
remove(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
QDP
              ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

REMOVE(x, .(y, z)) → REMOVE(x, z)

The TRS R consists of the following rules:

purge(nil) → nil
purge(.(x, y)) → .(x, purge(remove(x, y)))
remove(x, nil) → nil
remove(x, .(y, z)) → if(=(x, y), remove(x, z), .(y, remove(x, z)))

The set Q consists of the following terms:

purge(nil)
purge(.(x0, x1))
remove(x0, nil)
remove(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
QDP
                  ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

REMOVE(x, .(y, z)) → REMOVE(x, z)

R is empty.
The set Q consists of the following terms:

purge(nil)
purge(.(x0, x1))
remove(x0, nil)
remove(x0, .(x1, x2))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

purge(nil)
purge(.(x0, x1))
remove(x0, nil)
remove(x0, .(x1, x2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ QDP
              ↳ UsableRulesProof
                ↳ QDP
                  ↳ QReductionProof
QDP
                      ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

REMOVE(x, .(y, z)) → REMOVE(x, z)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: